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Tutorial 9: Simplex Explained 
“Does	an	'explanation'	make	it	any	less	impressive?”		
	―	Ludwig	Wittgenstein	

This	 tutorial	 explains	 how	 the	 simplex	 algorithm	
solves	the	LP	model,	i.e.,	how	the	simplex	algorithm	
takes	 us	 from	 the	 mathematical	 model	 of	 the	
electricity	 market	 to	 the	 resulting	 prices	 and	
quantities.	

Demonstrating the simplex algorithm 

Objective	and	Constraints	
As	 discussed	 in	 Tutorial	 1:	 Explaining	 Prices,	 the	
simplex	 algorithm	 solves	 a	 Linear	 Programming	
(LP)	 model,	 which	 is	 a	 mathematical	 problem	
specified	in	terms	of:	

• An	objective	equation	
• Constraint	 equations	 that	must	be	obeyed	while	
achieving	the	objective.	

The	 objective	 of	 the	 electricity	market	model	 is	 to	
maximize	the	objective	value,	which	is	calculated	as	
the	difference	between	the	value	of	the	 load	that	 is	
supplied,	and	 the	cost	of	 the	generation	offers	 that	
must	be	cleared	in	order	to	supply	the	load.	
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The	constraints	ensure	that	the	mathematical	model	
behaves	 in	the	same	way	as	the	physical	electricity	
network,	e.g.,	there	is	a	constraint	that	models	how	
power	flows	along	a	transmission	circuit.	

Small	electricity	market	model	
The	 details	 of	 the	 simplex	 algorithm	 can	 be	
demonstrated	 by	 means	 of	 a	 small	 electricity	
market	model	 consisting	of	 a	 generator	 and	a	 load	
connected	via	a	bus,	as	shown	 in	Figure	119.	Build	
the	model	by	tapping	the	Bus,	Gen,	Load	buttons	on	
the	Build	toolbar.		

	
Figure	119:	The	small	model	

Constraints	for	the	small	model	
The	 constraints	 that	 model	 the	 physical	 reality	 of	
the	small	model	are	listed	in	Table	8.	
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Table	8:	Constraints	in	the	small	model	

Component	 Purpose	of	associated	constraint	
Bus00 Node balance constraint ensures that 

the quantity of electricity that enters 
the bus is equal to quantity that leaves 

Gen00 Limit the cleared offer quantity to no 
more than the quantity that was offered 

Load00 Limit the cleared bid quantity to no 
more than the quantity that was bid 

The	 constraints	 listed	 in	 Table	 8	 are	 modelled	 by	
the	 equations	 shown	 in	 Equation	 25,	 Equation	 26	
and	Equation	27.	

𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& − 𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& = 0	
Equation	25:	Node	balance	equation	

𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& ≤ 𝑙𝑜𝑎𝑑𝐵𝑖𝑑'$(	
Equation	26:	Max	cleared	bids		

𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& ≤ 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟'$(	
Equation	27:	Max	cleared	offers	

Objective	function	for	the	small	model	
The	 objective	 function	 for	 the	 small	 model	 is	
represented	by	Equation	28.	
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Maximize:		
𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& × 𝑙𝑜𝑎𝑑𝐵𝑖𝑑)%*+#	

−𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& × 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟)%*+#	
Equation	28:	Objective	function	

Simplex	standard	form	
The	 simplex	 algorithm	 requires	 that	 the	 equations	
be	expressed	in	a	standard	form:	

• All	equations	expressed	as	𝑎𝑥 ≤ 𝑏	
with	𝑏 ≥ 0,	i.e.,	the	RHS	values	are	all	≥0	

• Objective	 function	 expressed	 as	 a	 value	 to	 be	
maximized.	

The	electricity	market	model	in	standard	form	
Our	objective	function	already	has	maximization	as	
its	requirement,	which	matches	standard	form.		
All	 the	 constraints	 except	 for	 the	 node	 balance	
constraint	 meet	 the	𝑎𝑥 ≤ 𝑏	requirement.	 The	 node	
balance	 constraint	 is	 an	 equality	 constraint,	 so	we	
replace	the	=	with	a	≥	and	a	≤.			
The	≤	is	 already	 in	 standard	 form.	 The	≥	equation	
is	not,	so	we	multiply	both	sides	by	-1	to	turn	it	into	
a	≤	equation.	 We	 can	 do	 this	 because	 the	 RHS	 is	
zero;	hence	after	multiplying	it	by	-1	the	RHS	is	still	
zero	and	we	still	meet	the	𝑏 ≥ 0	requirement.	
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After	 this	 adjustment	 the	 complete	 set	 of	
constraints	 for	 the	 model,	 expressed	 in	 the	 form	
required	by	the	simplex	algorithm,	are	as	shown	in	
Equation	29.	

−𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& + 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& ≤ 0	
𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& − 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& ≤ 0	

𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& ≤ 𝑙𝑜𝑎𝑑𝐵𝑖𝑑'$(	
𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& ≤ 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟'$(	

Equation	 29:	 Equation	 constraints	 for	 the	 small	 model,	
expressed	in	standard	form	

Viewing	the	constraints	
To	 view	 the	 constraints	 for	 the	 small	 model,	 first	
you	 need	 to	 solve	 the	model	 by	 tapping	 the	 Solve	
button,	 which	 takes	 you	 to	 the	 Solve	 Settings	
display,	make	sure	all	 the	options	are	selected	OFF	
and	then	tap	the	Solve	Now	button.	
When	 the	 solver	 has	 completed,	 tap	 the	 Results	
button,	 then	 tap	 the	 Constraints	 row,	 which	 takes	
you	to	the	constraints	display	shown	in	Figure	120.	
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Figure	120:	Constraint	equations	for	the	small	model	
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Parameters	and	Variables	
The	 elements	 of	 the	 constraint	 equations	 are	
variables	and	parameters.		
	
Parameters	are	the	fixed	amounts:	
𝑙𝑜𝑎𝑑𝐵𝑖𝑑'$( = 100	
𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟'$( = 250		
	
Variables	are	the	values	that	will	be	determined	by	
the	simplex	algorithm:	
𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#&	
𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#&		
	

Electricity	 market	 equations	 represented	 in	
tableau	form	
The	 simplex	 algorithm	 is	 easier	 to	 follow	 if	 the	
equations	 that	 form	 the	 mathematical	 model	 are	
represented	as	a	tableau.	
In	 the	 tableau	 the	 constraints	 are	 the	 rows,	 the	
variables	 are	 the	 columns,	 and	 the	 number	 at	 the	
intersection	of	the	rows	and	columns	represents	the	
factor	that	the	variable	has	in	the	constraint.		
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The	following	sections	describe	the	actions	that	the	
simplex	 algorithm	 takes	 in	 order	 to	 maximize	 the	
objective	value.	You	can	track	these	actions	via	 the	
tableaux.		
The	 tableaux	 for	 the	 small	 model	 are	 shown	 in	
Figure	121	and	Figure	122	(which	are	two	halves	of	
one	 spreadsheet,	presented	as	 two	 figures	because	
it	is	too	wide	for	this	page).	
	

	
Figure	121:	Left	side	of	the	tableaux	
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Figure	122:	Right	side	of	the	tableaux		

Tracking	the	simplex	solve	
The	 app	 allows	 you	 to	 track	 the	 actions	 of	 the	
simplex	 algorithm	 by	 saving	 the	 tableaux	 that	 the	
simplex	algorithm	uses.	After	the	simplex	algorithm	
has	finished	solving,	the	tableaux	can	be	exported	to	
a	 csv	 file,	 e.g.,	 as	 shown	 in	 Figure	 121	 and	 Figure	
122.		
We	 are	 going	 to	 export	 the	 tableaux	 for	 the	 small	
model.	 Before	 we	 click	 the	 Solve	 Now	 button	 the	
app	 needs	 to	 know	 that	 we	 want	 to	 save	 the	
tableaus.	 The	 tableaux	 are	 not	 saved	 by	 default,	
because	 for	 larger	models	 the	 size	 of	 the	 tableaux	
grows	quite	quickly	and	writing	them	out	will	slow	
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down	the	time	that	it	takes	to	solve	the	model	(or	if	
they	are	very	large,	the	app	will	run	out	of	memory).	

Choosing	to	save	tableaux	
Tapping	 the	 Solve	 button	 takes	 you	 to	 the	 Solve	
Options	display,	which	includes	the	“Save	Tableaux”	
option	shown	in	Figure	123.	The	“Some”	option	will	
save	 the	 first,	 second	 and	 last	 tableaux.	 Select	 the	
“All”	option,	then	solve.	

	
Figure	123:	"Save	Tableaux"	on	the	Solve	Settings	display	

Accessing	the	saved	tableaux	
To	 view	 the	 saved	 tableaux,	 after	 the	 solve	 has	
completed	you	will	need	to	export	them	as	a	csv	file	
via	email.	Go	to	the	Results	display	and	then	tap	the	
“Import	Export”	button,	indicated	in	Figure	124.	

	
Figure	124:	The	Import	Export	button	

The	“Import	Export”	icon	leads	to	the	“Import	
Export”	display	shown	in	Figure	125.	To	export	the	
tableaux,	tap	the	“Email	Results”	button.	
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Figure	125:	The	 Import	Export	display…	use	Email	Results	 to	
export	the	tableaux	

The	 “Email	 Results”	 email	 will	 contain	 several	
attachments…	a	 screenshot	 of	 the	model,	 a	 csv	 file	
containing	 the	 results	 of	 the	 latest	 solve	 and	
(assuming	 that	 there	 are	 saved	 tableaux)	 a	 csv	 file	
containing	 the	 saved	 tableaux	 from	 the	 solve.	 You	
can	open	the	tableaux	csv	in	a	spreadsheet.	

Layout	of	the	tableau	
The	heading	 for	each	 tableau	describes	 the	actions	
that	the	algorithm	will	apply	to	that	tableau	in	order	
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to	improve	the	objective	value	and	thereby	arrive	at	
the	next	 tableau,	 e.g.,	 for	Tableau00	 the	heading	 is	
“col[1]	will	 enter	 via	 row[2]	 and	 col[4]	will	 leave”.	
What	this	means	is	explained	below,	as	we	track	the	
progress	of	the	solve.	
Each	 variable	 has	 its	 own	 column	 in	 the	 tableau.	
Each	constraint	has	its	own	row.	The	label	for	each	
row	 includes	 the	 name	 of	 the	 constraint,	 the	 row	
number,	 and	 the	 column	 number	 of	 the	 basic	
variable	(explained	below)	for	that	constraint.		

Initial Tableau 
The	 simplex	 algorithm	 works	 to	 maximise	 the	
objective	 value	while	meeting	 the	 requirements	 of	
the	 constraints.	 To	 do	 this	 the	 simplex	 algorithm	
converts	 the	 equations,	 which	 are	 supplied	 to	 the	
algorithm	 in	 the	 standard	 form	 described	 above,	
into	 a	 set	 of	 equality	 constraints	 that	 represent	 a	
feasible	 solution.	 These	 are	 the	 equations	
represented	by	the	tableau.	

Slack	variables	
Each	tableau	represents	a	valid	solution	that	meets	
the	 requirements	 of	 the	 constraints.	 To	 create	 the	
initial	 tableau	 the	 first	 thing	 that	 the	 simplex	
algorithm	 does	 is	 to	 convert	 the	 <=	 constraints	 to	
equality	 constraints	 (constraints	 that	 have	 an	 =	
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sign)	 by	 adding	 slack	 variables.	 Starting	 with	 the	
inequality	constraint,	e.g.,	

−𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& + 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& ≤ 0	
…the	 simplex	 algorithm	 adds	 a	 slack	 variable,	𝑠,.	
The	slack	variable	can	take	any	non-negative	value	
and	 this	 allows	 the	 inequality	≤	in	 the	 original	
equation	to	be	replaced	with	an	equality,	to	create	a	
new	constraint:	

−𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& + 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& + 𝑠, = 0	
This	 meets	 the	 requirements	 of	 the	 original	
constraint,	 provided	 that	 the	 RHS	 is	 non-negative	
and	 all	 variables	 are	≥ 0.	 These	 requirements	 will	
be	enforced	by	the	rules	of	the	algorithm.	

Adding	slack	variables	
Adding	slack	variables	produces	an	equivalent	set	of	
equality	constraints:	
−𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& + 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& + 𝑠, = 0	
𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& − 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& + 𝑠- = 0	
𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& + 𝑠. = 100	
𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& + 𝑠/ = 250	

Basic	Feasible	Solution	(BFS)	
From	 the	 equations	 shown	 above,	 the	 simplex	
algorithm	 creates	 the	 initial	 feasible	 solution	 by	
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setting	all	 the	slack	variables	 to	 the	RHS	value	and	
all	other	variables	to	zero:	

s, = 0	
s- = 0	

loadBid0123425 = 0	
s. = 100	

𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& = 0	
s/ = 250	

This	 is	 represented	 by	 the	 initial	 tableau	 from	 the	
csv,	i.e.,	Tableau01,	reproduced	in	Table	9.	
Table	9:	Constraints	in	the	initial	tableau	

Basic 

	

𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$ 
[1] 

𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$ 
[2] 

𝑠% 
[3] 

𝑠& 
[4] 

𝑠' 
[5] 

𝑠( 
[6] 

𝑅𝐻𝑆 

[3] -1 1 1    0 

[4] 1 -1  1   0 

[5] 1    1  100 

[6]  1    1 250 

Basic	variables	
In	 this	 first	 Basic	 Feasible	 Solution	 (BFS)	 all	 the	
variables	have	their	value	set	to	zero	except	for	the	
slack	 variables.	 The	 solution	 is	 feasible	 because	
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each	 constraint	 only	 has	 one	 non-zero	 variable,	
which	is	the	slack	variable.		
The	variables	that	are	set	to	zero	are	referred	to	as	
the	 non-basic	 variables.	 The	 remaining	 variables,	
currently	 represented	 by	 the	 slack	 variables,	
constitute	the	basis	of	the	solution	and	are	referred	
to	as	the	basic	variables.	

One	basic	variable	per	constraint	
The	 basic	 variables	 are	 the	 variables	 that	 can	 be	
non-zero.	Each	constraint	has	its	own	basic	variable,	
this	 basic	 variable	 has	 a	 factor	 of	 1.0	 in	 the	
constraint	where	it	is	the	basic	variable,	and	a	factor	
of	zero	in	all	other	constraints.		
In	 the	 tableaux	 file,	 each	 row	 records	 the	 column	
that	 contains	 the	 basic	 variable	 for	 that	 row’s	
constraint,	 e.g.,	 for	 row	 [1]	 the	 basic	 column	 is	
column	[3].		
Note	that	while	the	non-basic	variables	are	assigned	
a	value	of	zero,	they	can	still	have	a	non-zero	factor.	
For	example,	 the	LoadBidCleared	variable	has	non-
zero	factors	in	three	of	the	equations,	but	it	is	non-
basic	so	the	LoadBidCleared	variable	has	a	value	of	
zero	by	definition	of	it	being	non-basic.		
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The	objective	function	including	slack	variables	
While	 this	 initial	 solution	 is	 feasible,	 the	 objective	
value	as	calculated	by	Equation	30	is	zero	because	it	
was	defined	in	terms	of	the	original	variables,	which	
are	 currently	 all	 non-basic	 and	 therefore	 have	
values	of	zero.	The	slack	variables	have	been	added	
to	the	objective	value,	with	factors	of	zero.	
Equation	30:	The	objective,	incorporating	the	slack	variables	

Maximize:	
150	 × 𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#&	
−100 × 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#&	

+	0 × 𝑠, + 0 × 𝑆- + 0 × 𝑠. + 0 × 𝑆/	

Improving the objective value 
Starting	 with	 the	 initial	 Basic	 Feasible	 Solution	
(BFS),	the	simplex	algorithm	moves	to	another	BFS	
that	 improves	 the	 objective	 value.	 Improving	 the	
objective	 value	 is	 achieved	 by	 identifying	 the	 non-
basic	variable	whose	increase	would	most	 improve	
the	 objective	 value,	 and	 then	 making	 it	 a	 basic	
variable,	 by	 exchanging	 it	 with	 one	 of	 the	 existing	
basic	variables.		
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Keeping	track	of	the	objective	value	
To	 keep	 track	 of	 the	 objective	 value,	 the	 objective	
function	 is	 re-written	 as	 a	 constraint.	 Using	 z	 to	
represent	the	objective	value,	the	objective	function	
as	a	constraint	is	shown	in	Equation	31.	

𝑧 − 𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& × 𝑙𝑜𝑎𝑑𝐵𝑖𝑑)%*+#	
+	𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& × 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟)%*+# = 0	
Equation	31:	Writing	the	objective	function	as	a	constraint	
with	the	objective	value	as	variable	z	

Table	10	shows	the	initial	tableau	with	the	objective	
function	added	as	a	constraint.	
Table	10:	Constraints	and	objective	as	a	tableau	

𝑧 𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"%& 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"%& 𝑠, 𝑠- 𝑠. 𝑠/ 𝑅𝐻𝑆 
 -1 1    1 0 
 1 -1   1  0 
 1   1   100 
  1 1    250 

1 -160 70     0 
The	 algorithm	 progresses	 by	 making	 non-basic	
variables	 basic	 to	 improve	 the	 objective,	 while	
obeying	the	rule	that	there	is	one	basic	variable	per	
constraint	and	the	basic	variable	has	a	factor	of	zero	
in	all	other	rows.	This	is	achieved	by	a	series	of	row	
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operations.	 This	 will	 maintain	 the	 relationship	
between	 the	 variables	 as	 enforced	 by	 the	 original	
set	 of	 constraints.	 The	 row	 operations	 will	 also	
update	the	objective.	
It	 turns	 out	 that	 we	 don’t	 need	 to	 display	 the	 z	
column,	 because	 other	 than	 z	 there	 are	 no	 other	
values	 in	 this	 column	 so	 row	 operations	 won’t	
change	 the	 z	 factor,	 and	 we	 won’t	 be	 scaling	 the	
objective	 row,	 hence	 the	 factor	 of	 z	will	 always	 be	
one.		
The	 initial	 tableau	can	now	be	presented	as	shown	
in	 Table	 11,	 which	 lines	 up	 with	 the	 csv	 export	
shown	in	Figure	121	and	Figure	122.	
Table	11:	The	initial	tableau,	incorporating	the	objective	

Basic 

	

𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$ 
[1] 

𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$ 
[2] 

𝑠% 
[3] 

𝑠& 
[4] 

𝑠' 
[5] 

𝑠( 
[6] 

𝑅𝐻𝑆 

[3] -1 1 1    0 

[4] 1 -1  1   0 

[5] 1    1  100 

[6]  1    1 250 

 -160 70     0 

The	basic	variables	will	also	have	factors	of	zero	in	
the	 objective	 function	 constraint.	 As	 the	 other	
variables	 in	 the	 objective	 constraint	 are	 non-basic	
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and	have	values	of	zero,	the	only	variable	that	is	not	
set	to	zero	and	has	a	non-zero	factor	is	the	objective	
value	z,	which	is	therefore	equal	to	the	RHS.		
Currently	 the	RHS	of	 the	objective	 row	 is	 zero	and	
therefore	the	objective	value	is	zero.	The	algorithm	
will	now	work	to	improve	the	objective	value.	

Reduced	costs	
The	 only	 variables	 in	 the	 objective	 function	
constraint	 that	 have	 non-zero	 factors	 are	 the	 non-
basic	variables.		
The	non-basic	variables	have	values	of	zero.	If	one	of	
these	variables	became	non-zero	then	the	objective	
value	z,	(hidden	off	to	the	left	with	its	factor	always	
one)	 would	 need	 to	 change,	 in	 order	 to	 keep	 the	
constraint	balanced.	
For	 example,	 if	 the	𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"%&	variable,	which	has	
a	factor	of	-150	in	the	objective	function	constraint,	
were	 to	 take	 on	 a	 value	 of	 1.0	 then	 the	 objective	
value	RHS	(and	therefore	z)	would	need	to	take	on	a	
value	 of	 150	 in	 order	 to	 keep	 the	 objective	
constraint	balanced.		
Likewise,	 if	 the	𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"%&	variable	with	a	 factor	
of	 70	 were	 to	 take	 on	 a	 value	 of	 1.0	 then	 the	
objective	value	would	need	to	be	-70.		
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Hence,	 the	 factors	 in	 the	 objective	 function	
constraint	 indicate	 which	 variable	 is	 the	 best	 to	
increase	 in	 order	 to	 improve	 the	 objective	 value.	
These	factors	are	referred	to	as	the	reduced	costs.	
In	 this	 case	 only	 the	 𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"%& 	variable	 can	
improve	 the	 objective	 value.	 Because	 it	 has	 a	
reduced	 cost	 of	 -150,	 each	 unit	 of	 increase	 by	 the	
𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"%&	variable	 improves	 the	 objective	 value	
by	150.		

The	entering	variable	and	the	leaving	variable	
To	 increase	 the	 objective	 value,	 the	 simplex	
algorithm	 chooses	 the	 variable	 with	 the	 most	
negative	reduced	cost,	in	this	case	𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"%&,	and	
then	increases	the	value	of	that	variable	as	much	as	
possible.	 Because	 the	 only	 variables	with	non-zero	
reduced	costs	are	the	non-basic	variables	(assigned	
a	 value	 of	 zero),	 in	 order	 for	 the	 value	 of	 this	
variable	to	be	increased	it	needs	to	become	a	basic	
variable.	
However,	the	tableau	is	feasible	by	virtue	of	the	fact	
that	 there	 is	 only	 one	 basic	 variable	 for	 each	
constraint,	so	in	order	for	the	non-basic	variable	to	
become	basic,	i.e.,	to	enter	the	basis,	one	of	the	basic	
variables	will	 need	 to	 become	 non-basic,	 i.e.,	 leave	
the	basis.	
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For	the	non-basic	variable	to	enter,	the	tableau	will	
need	 to	 be	 manipulated	 so	 that	 canonical	 form	 is	
maintained,	i.e.,	so	that	the	newly	basic	variable	has	
a	factor	of	1.0	in	the	entering	constraint	and	zero	in	
all	 other	 constraints,	 including	 the	 objective	
function	constraint.	

Determining	the	entering	constraint	
The	 entering	 constraint	 is	 selected	 by	 finding	 the	
row	that	allows	the	factor	of	the	entering	variable	to	
be	set	to	1.0	in	that	row	and	zero	in	all	other	rows.	
What	 drives	 this	 selection	 is	 not	 what	 happens	 in	
the	 entering	 row,	 because	 there	 it	 is	 a	 simple	
division	 to	 obtain	 a	 factor	 of	 one,	 but	 rather	what	
happens	 to	 the	 other	 rows	 in	 order	 to	 set	 the	
entering	variable’s	factor	to	zero	in	those	rows.	
The	first	step	to	making	the	entering	variable	basic	
is	 to	 divide	 the	 entering	 row	 by	 the	 factor	 of	 the	
entering	 variable	 in	 that	 row,	 so	 that	 its	 factor	
becomes	1.0.	Then	the	row	operations	will	subtract	
a	multiple	of	the	entering	row	from	the	other	rows	
so	 that	 the	entering	variable’s	 factor	becomes	zero	
in	those	rows.	

Row	operations	example	on	a	dummy	tableau	
To	 demonstrate	 how	 and	 why	 the	 algorithm	
determines	 the	 entering	 row,	 we	 will	 use	 the	
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dummy	tableau	shown	in	Table	12.	We	are	using	a	
dummy	tableau	because	 the	numbers	 in	our	actual	
model	don’t	lend	themselves	to	explaining	the	issue.		
The	 entering	 row	 is	 dictated	 by	 the	 requirement	
that	 variables	 must	 be	 non-negative	 (remember	
that	 this	 requirement	 arose	 when	 the	 original	
inequality	 constraints	 were	 replaced	 with	 slack	
variables	and	equality	constraints).		
The	 algorithm	 cannot	 select	 an	 entering	 row	 that	
would	 cause	 any	 of	 the	 basic	 variables	 to	 be	
assigned	 a	 negative	 value	 (the	 non-basic	 variables	
have	values	of	 zero	 regardless	of	 the	 equations,	 so	
we	don’t	have	to	worry	about	them).				
Table	 12:	 Dummy	 tableau	 to	 demonstrate	 entering	 and	
leaving	variables	

 Col#1 2 3 4 5 RHS 
 var1 var2 var3 var4 var5  
Row#1 -7 1    1 
2 5  1   20 
3 10   1  1 
4 40  1  1 8 
5 -150 70    0 
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In	 the	 dummy	 example	 the	 entering	 variable	 is	 in	
column	 one	 (because	 it	 has	 the	 most	 negative	
reduced	cost).	When	selecting	the	entering	row	we	
obviously	 can’t	 use	 the	 row	 with	 the	 -7	 factor	
because	to	make	the	factor	1	would	result	in	a	RHS	
of	 -1/7,	 and	 then	 the	 value	 of	 the	 basic	 variable	
would	 be	 -1/7,	 which	 cannot	 happen	 because	 all	
variables	must	be	>=	0.	
If	row	2	was	selected,	then	in	order	for	the	entering	
variable	 to	 take	 on	 a	 factor	 of	 1.0	 in	 that	 row,	 the	
row	would	be	divided	by	5.0,	and	the	RHS	becomes	
4.0.	Row	2	and	3	would	then	be	as	follows:	
 Col#1 2 3 4 5 RHS 
Row#2 1  1/5   4 
Row#3 10   1  1 
Row	2	is	OK,	but	now	to	give	the	entering	variable	a	
factor	of	zero	in	row	3	we	need	to	subtract	10	x	row	
2	from	row	3.	This	will	result	in	a	RHS	value	of	-39	
for	 row	 3	 and	 then	 the	 basic	 variable	 for	 row	 3	
would	become	negative…	so	we	can’t	do	this.	
Therefore,	 in	 order	 to	 prevent	 a	 negative	 RHS	 for	
any	of	the	other	rows,	the	entering	row	must	be	the	
row	 with	 the	 smallest	 positive	 ratio	 of	 RHS	 to	
entering	 variable	 factor…	 so	 that	 when	 any	 other	
row	subtracts	the	entering	row	(in	order	to	zero	the	
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entering	variable	 in	 that	row),	 the	RHS	of	 that	row	
will	remain	positive.	
In	 our	 dummy	 example,	 the	 row	with	 the	 smallest	
positive	 ratio	 of	 RHS	 to	 entering	 factor	 is	 row	 3,	
where	the	ration	is	1/10.	After	the	entering	variable	
has	entered	via	row	3,	the	tableau	is	shown	in	Table	
13.	
Table	13:	Dummy	tableau	after	pivot	

 Col#1 2 3 4 5 RHS 
Row#1 0 1  0.7  1.7 
#2 0  1 -0.5  19.5 
#3 1   0.1  0.1 
#4 0  1 -4 1 4 
Obj 0 70  15  15 

The	new	tableau	after	the	pivot	
Back	 to	 our	 small	 model,	 the	 column	 with	 the	
smallest	 ratio	 of	 RHS	 to	 entering	 factor	 is	 row	 2,	
with	a	ratio	of	zero.	This	is	the	same	as	the	ratio	for	
row	 1…	 for	 consistency	 if	 more	 than	 one	 row	 has	
the	same	ratio	then	we	always	use	the	last	row	that	
we	 find,	 i.e.,	 row	2	 in	 this	 case	 (it	 does	 not	matter	
how	 we	 make	 the	 decision	 as	 long	 as	 we	 are	
consistent).	
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After	row	operations	have	been	performed	to	allow	
𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"%&	to	become	a	basic	variable,	the	tableau	
appears	as	shown	in	Table	15.		
The	 entering	 variable	 is	𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"%&.	 The	 leaving	
variable	is	the	variable	that	was	previously	basic	in	
the	entering	row.	In	this	case	the	leaving	variable	is	
the	 slack	 variable	 s2,	 which	 becomes	 a	 non	 -basic	
variable.	
Now	 that	𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"%&	is	 a	 basic	 variable	 it	 is	 no	
longer	 confined	 to	 a	 value	 of	 zero.	 However,	 the	
equation	 where	𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"%&is	 basic	 has	 a	 RHS	 of	
zero,	 therefore	 the	𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"%&	variable	 is	assigned	
a	value	of	zero	by	the	equation.	
We	 can	 also	 see	 from	 the	 RHS	 of	 the	 objective	
constraint	that	the	objective	value	is	still	zero.	
Table	14:	Initial	tableau	(again)	

Basic 

	

𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$ 
[1] 

𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$ 
[2] 

𝑠% 
[3] 

𝑠& 
[4] 

𝑠' 
[5] 

𝑠( 
[6] 

𝑅𝐻𝑆 

[3] -1 1 1    0 

[4] 1 -1  1   0 

[5] 1    1  100 

[6]  1    1 250 

 -160 70     0 
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Table	15:	Second	tableau	

Basic 

	

𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$ 
[1] 

𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$ 
[2] 

𝑠% 
[3] 

𝑠& 
[4] 

𝑠' 
[5] 

𝑠( 
[6] 

𝑅𝐻𝑆 

[3]   1 1   0 

[1] 1 -1  1   0 

[5]  1  -1 1  100 

[6]  1    1 250 

  -90  160   0 

Updating	the	objective	value	
Bringing	 the	 entering	 variable	 into	 the	 basis	
included	a	row	operation	 to	set	 its	 reduced	cost	 to	
zero.	 The	 reduced	 cost	 of	 zero	 indicates	 that	 the	
variable	has	been	increased	as	much	as	possible	and	
cannot	improve	the	objective	value	any	further.	The	
row	 update	 that	 set	 the	 reduced	 cost	 to	 zero	 also	
updated	the	objective	value.	
The	reduced	cost	of	the	entering	variable	was	-150,	
hence	 to	 zero	 the	 reduced	 cost,	 the	 row	 operation	
added	150	 times	 the	 entering	 row	 to	 the	 objective	
row.	This	added	150	times	the	RHS	of	 the	entering	
row	 to	 the	 RHS	 of	 the	 objective	 row.	 Because	 the	
RHS	of	the	entering	row	is	the	value	of	the	entering	
variable,	 this	 has	 the	 effect	 of	 adding	 the	 entering	
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variable	 to	 the	 objective	 value…	 which	 was	 the	
intent	of	the	iteration	in	the	first	place.	

Adjusting	the	reduced	costs	
The	first	step	of	the	row	operations	was	to	scale	the	
entering	 row	 so	 that	 the	 entering	 variable	 has	 a	
factor	 of	 one.	 This	 also	 scaled	 all	 other	 factors	 in	
that	row.		
Apart	 from	 the	 entering	 variable,	 the	 only	 other	
variables	with	non-zero	factors	in	the	entering	row	
are	 non-basic	 variables.	 After	 scaling,	 the	 entering	
variable	 has	 a	 factor	 of	 one	 and	 the	 factor	 of	 each	
non-basic	 variable	 in	 the	 row	 now	 indicates	 how	
much	 a	 change	 in	 their	 value	 would	 force	 the	
entering	variable	to	change	(if	they	were	to	become	
non-zero).	
After	 we	 scaled	 the	 entering	 row	 to	 make	 the	
entering	 factor	 one,	we	 added	 that	 row,	multiplied	
by	the	reduced	cost	of	 the	entering	variable,	 to	 the	
objective	function,	this	was	to	zero	the	reduced	cost	
of	 the	 entering	 variable.	 This	 updated	 the	 reduced	
cost	 of	 all	 the	 non-basic	 variables	 based	 on	 how	
much	 freedom	 they	 can	 provide	 the	 entering	
variable,	and	the	value	of	the	entering	variable.	
Looking	at	 tableau	2	 in	Figure	126	and	Figure	127	
(the	tableaux	csv	again)	we	can	see	that	the	update	
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of	 the	 objective	 function	 has	 changed	 the	 reduced	
cost	 of	 the	 cleared	 offer	 from	 positive	 to	 negative,	
because	 its	 potential	 to	 allow	 the	 cleared	 bid	 to	
increase	has	overcome	the	cost	of	the	offer.	

	
Figure	126:	Left	side	of	the	tableaux	csv	
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Figure	127:	Right	side	of	the	tableaux	csv	

Why	the	objective	value	is	still	zero	
Now	 that	 the	 cleared	 bid	 is	 a	 basic	 variable	 it	 can	
take	 a	 non-zero	 value	 but	 because	 the	 RHS	 of	 its	
basic	 constraint	 is	 zero	 the	 cleared	 bid	 is	
constrained	 to	 zero,	 and	 therefore	 the	 objective	
value	is	still	zero.		

The	next	entering	variable	
Now	 that	 the	 cleared	 bid	 variable	 is	 basic	 it	 is	
constrained	 by	 the	 RHS	 of	 its	 constraint.	 The	
cleared	bid	can	only	increase	if	enabled	to	do	so	by	
another	 variable	 in	 this	 constraint.	 The	 other	
variable	would	need	to	have	a	negative	factor	in	the	
constraint…	 increasing	 the	 value	 of	 this	 other	
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variable	 would	 allow	 the	 cleared	 bid	 variable	 to	
increase.	
We	 know	 the	 contents	 of	 the	 node	 balance	
constraint	in	this	model,	i.e.,	cleared	bids	out	of	the	
bus	must	be	matched	by	cleared	offers	in,	so	it	is	no	
surprise	that	the	variable	that	will	allow	the	cleared	
bid	variable	to	increase	is	the	cleared	offer	variable.		
The	reduced	cost	for	cleared	offers	is	now	-$90,	i.e.,	
the	 difference	 between	 the	 $70	 cost	 of	 the	 cleared	
offer	 (i.e.,	 its	 original	 reduced	 cost)	 and	 the	
$160/MW	 benefit	 resulting	 from	 the	 increase	 in	
cleared	bids	that	the	cleared	offer	would	enable.		
This	 difference	 was	 calculated	 when	 the	 row	
operations	 zeroed	 the	 reduced	 cost	 of	 the	 cleared	
bid,	 passing	 the	 per	MW	benefit	 of	 the	 cleared	bid	
along	to	the	cleared	offer,	offsetting	the	existing	cost	
of	the	offer.		
Now	 that	 the	 cleared	 offer	 variable	 is	 the	 variable	
with	 the	most	 negative	 reduced	 cost,	 it	will	 be	 the	
next	 entering	variable.	The	next	 (and,	 in	 this	 small	
model,	final)	step	is	for	the	cleared	offer	variable	to	
enter	the	basis.	This	will	follow	the	same	procedure	
as	 above…	 find	 the	entering	 row	as	 the	 row	which	
will	 allow	 the	 necessary	 row	 operations	 without	
making	 any	 basic	 variables	 negative,	 and	 then	
perform	 row	 operations	 in	 order	 to	 allow	 the	
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entering	 variable	 to	 become	 basic	 (by	meeting	 the	
requirement	that	it	has	a	factor	of	1	in	the	entering	
row	and	zero	in	all	others).	

A	closer	look	at	the	entering	row	
The	entering	variable	becomes	the	basic	variable	in	
the	 row	 with	 the	 lowest	 ratio	 of	 RHS	 to	 factor,	
because	 choosing	 any	 other	 row	 would	 create	 a	
negative	RHS.		
Looking	 at	 the	 numbers,	 we	 can	 relate	 this	 to	 the	
reality	 of	 our	 model.	 One	 of	 the	 constraints	 in	
tableau02	 is	 the	offer	max	 constraint,	which	 in	 the	
initial	tableau	prevents	the	offer	from	clearing	more	
than	 its	 offered	 quantity.	 After	 the	 first	 pivot,	 this	
constraint	now	acts	 to	 limit	 the	 cleared	offer	 to	be	
no	more	than	the	cleared	bid.	
The	 row	 operations	 of	 the	 pivot	 effectively	moved	
the	 relationship	 between	 the	 bids	 and	 offers	 from	
the	 node	 balance	 constraint	 to	 the	 bid	 max	
constraint.		
This	“new”	constraint,	which	limits	the	cleared	offer	
to	be	no	more	that	the	cleared	bid	(which	is	the	bid	
max),	 becomes	 the	 entering	 constraint	 for	 the	
cleared	offer.	We	can	see	that	if	we	had	allowed	the	
cleared	 offer	 to	 enter	 via	 the	 other	 constraint,	 i.e.,	
the	 offer	 max	 constraint,	 then	 the	 cleared	 offer	
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quantity	 would	 be	 more	 than	 the	 cleared	 bid	
quantity,	breaking	the	node	balance.		
The	 algorithm	 can’t	 see	 this,	 but	 it	 selects	 the	 bid	
max	 row	 as	 the	 entering	 row	 for	 the	 cleared	 offer	
because	it	 is	the	constraint	with	the	lowest	ratio	of	
factor	 to	 RHS,	which	means	 the	 same	 thing	 as	 our	
observation…	it	is	the	constraint	that	will	bind	first	
when	 the	 entering	 variable	 is	 increased	 that	
determines	the	entering	row.	

Solve	complete	
When	the	cleared	offer	enters	the	basis,	the	RHS	of	
the	bid	max	constraint	sets	the	value	for	the	cleared	
offer.	 Because	 there	 are	 now	 no	 negative	 reduced	
costs	 there	 is	 no	 way	 to	 further	 improve	 the	
objective,	hence	the	solve	is	complete.	
“The	 tremendous	 power	 of	 the	 simplex	 method	 is	 a	
constant	surprise	to	me”	 -	George	Dantzig	 (inventor	
of	the	simplex	algorithm)		

Extracting the results from the final tableau 

Quantities	from	RHS	values	
In	 the	 final	 tableau	 shown	 in	 Table	 16	 the	 cleared	
offer	 and	 cleared	 bid	 variables	 are	 both	 basic,	 i.e.,	
able	to	be	non-zero.		
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The	cleared	bid	(column	1)	is	basic	in	row	2,	with	a	
RHS	of	100,	the	cleared	offer	(column	2)	is	basic	in	
row	 3,	 also	 with	 a	 RHS	 of	 100.	 These	 RHS	 values	
provide	the	values	of	the	basic	variables.	
Table	16:	The	final	tableau	

 

Basic 
𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$ 

[1] 
𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$ 

[2] 
𝑠% 
[3] 

𝑠& 
[4] 

𝑠' 
[5] 

𝑠( 
[6] 

𝑅𝐻𝑆 

[3]   1 1    

[1] 1    1  100 

[2]  1  -1 1  100 

[6]    1 -1 1 150 

    70 90  9000 

Shadow	price	of	constraints	
As	 discussed	 in	 Tutorial	 1:	 Explaining	 Prices,	 the	
shadow	price	of	a	constraint	is	the	rate	of	change	of	
the	 objective	 value	 due	 to	 relaxing	 that	 constraint.	
The	 shadow	 price	 therefore	 indicates	 the	 value	 of	
the	quantity	that	the	constraint	is	constraining.		
The	bus	price,	i.e.,	the	value	of	power	at	a	bus,	is	the	
shadow	 price	 of	 the	 node	 balance	 constraint...	 the	
node	 balance	 constraint	 constrains	 the	 flow	 of	
power	into	and	out	of	the	bus,	therefore	the	value	of	
relaxing	 the	 node	 balance	 constraint	 tells	 us	 the	
value	of	electrical	power	at	the	bus.	
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Shadow	price	from	final	tableau	
The	 shadow	prices	 can	be	 extracted	 from	 the	 final	
tableau.		
The	 values	 in	 the	 final	 tableau	 represent	 the	
optimum	 objective	 value	 and	 also	 meet	 the	
requirements	 of	 the	 original	 constraints.	 For	
example,	 given	 the	 original	 set	 of	 constraints	
(shown	 in	 Equation	 32)	we	 can	 plug	 in	 the	 values	
from	the	final	tableau	and	the	equations	will	solve.			

Equation	32:	Constraints	of	the	linear	programme	(again)	

−𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& + 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& + 𝑠, = 0	
𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& − 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#&				+𝑠- = 0	
𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& + 𝑠. = 10	
𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& + 𝑠/ = 20	

Using	 the	values	 from	 the	 final	 tableau,	 the	 second	
node	balance	constraint	is	shown	in	Equation	33.		

𝑙𝑜𝑎𝑑𝐵𝑖𝑑!"#$%#& -	 𝑔𝑒𝑛𝑂𝑓𝑓𝑒𝑟!"#$%#& +	 𝑠- = 0 
100 - 100 + 0 = 0 

Equation	33:	Node	balance	with	final	tableau	values	

We	 can	 see	 from	 Equation	 33	 that	 decreasing	 the	
value	 of	 slack	 variable	 s2	relaxes	 the	 node	 balance	
constraint,	 and	 therefore	 the	 impact	 on	 the	
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objective	 value	 of	 decreasing	 s2	in	 the	 final	 tableau	
will	 provide	 the	 shadow	price	 of	 the	 node	 balance	
constraint	in	the	final	tableau,	and	therefore	the	bus	
price.		
To	 find	 the	 impact	 on	 the	 objective	 value	 of	
decreasing	 s2	remember	 that	 the	 progress	 of	 the	
algorithm	 was	 driven	 by	 looking	 for	 negative	
reduced	 costs	 because	 they	 indicate	 the	 rate	 at	
which	 the	 objective	 value	 will	 improve	 if	 we	
increase	the	associated	variable.		
From	 this	 it	 follows	 that	 a	 positive	 reduced	 cost	
indicates	 the	 rate	 at	 which	 the	 objective	 will	
decrease	 if	we	 increased	the	variable.	And	also,	 the	
observation	 that	 helps	 us	 here,	 a	 positive	 reduced	
cost	 indicates	 the	rate	at	which	 the	objective	value	
will	increase	if	we	could	decrease	the	variable.		
The	positive	 reduced	cost	of	 s2	provides	 the	 rate	of	
objective	 value	 increase	 that	 would	 result	 from	
decreasing	 s2.	 Decreasing	 s2	 relaxes	 the	 node	
balance	 constraint	 that	 originally	 contained	 s2.	
Therefore,	 the	 positive	 reduced	 cost	 of	 s2	 provides	
the	 improvement	 to	 the	 objective	 value	 due	 to	
relaxing	the	node	balance	constraint.		
From	the	final	tableau	we	can	see	that	the	reduced	
cost	of	s2	is	70,	which	is	therefore	the	shadow	price	
of	the	node	balance	constraint.	
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The	 above	 is	 true	 of	 any	 of	 the	 constraints.	 The	
positive	 reduced	 cost	 in	 the	 final	 tableau	 of	 the	
constraint’s	original	 slack	variable	will	provide	 the	
shadow	price	of	the	constraint.	

Viewing the simplex iterations 
As	 well	 as	 exporting	 the	 tableaux	 to	 see	 what	 the	
simplex	algorithm	did,	you	can	also	view	details	of	
the	simplex	solve	from	within	the	app.	

Iteration	details	
On	the	Results	display	select	the	Iterations	row,	this	
will	take	you	to	the	iteration	details	as	displayed	in	
Figure	128	(these	are	the	 iterations	 from	the	small	
model	that	we	have	just	studied).	
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Figure	128:	Iteration	details	display	

Graphical	view	of	iterations	
The	simplex	iterations	can	also	be	viewed	as	a	chart	
by	 tapping	 the	 Chart	 button	 on	 the	 Iterations	
display	(this	chart	is	also	displayed	while	the	solver	
is	solving).	The	chart	shows	iterations	vs	objective,	
as	displayed	in	Figure	129.	This	chart	shown	is	from	
the	 Hawkes	 Bay	 033	 sample	 case	 which	 was	
presented	in	Tutorial	8:	Actual	Market	Data.	
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Figure	129:	Iterations	vs	objective	(shown	here	for	the	Hawkes	
Bay	033	model)	
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.	 	
Figure	130:	Zoom	in	to	view	individual	iterations	

Use	 the	 pinch	 gesture	 to	 zoom	 in	 and	 view	 the	
individual	 iteration	points,	as	shown	in	Figure	130.	
Tapping	 on	 an	 iteration	 point	 will	 present	 the	
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simplex	 actions	 that	 produced	 this	 result,	 see	 the	
example	in	Figure	131.	

	
Figure	131:	Tap	iteration	point	to	view	simplex	actions	
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Summary	
In	this	section	we	built	and	solved	a	small	electricity	
model	 then	 exported	 its	 tableaux	 and	 tracked	 in	
detail	 how	 the	 simplex	 algorithm	 arrived	 at	 the	
result.	 Along	 the	 way	 we	 explained	 how	 and	 why	
the	 simplex	 algorithm	 makes	 the	 decisions	 that	 it	
does,	and	why	it	works.		
When	 the	 result	 was	 complete,	 we	 saw	 how	 the	
prices	 and	 quantities	 are	 extracted	 from	 the	 final	
tableau.		
We	also	 saw	how	 to	view	 the	 simplex	 iterations	 in	
the	app,	either	via	a	description	of	the	iterations,	or	
graphically	as	a	chart	of	objective	value	vs	iteration	
count.	


